A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data
نویسندگان
چکیده
This study presents a method for adjusting long-term climate data records (CDRs) for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS). Recently, a 23-year long (1983–2005) continuous SIS CDR has been generated based on the visible channel (0.45–1 μm) of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005) and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards) were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present) was applied that combines the Standard Normal Homogeneity Test (SNHT) and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the OPEN ACCESS Remote Sens. 2013, 5 4694 ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN) and about 50 stations of the Global Energy Balance Archive (GEBA) over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of any segment between two break points to the last segment (2006–present). Corrections are applied to the most significant breaks that can be related to satellite changes. This study focuses on the European region, but the methods can be generalized to other regions. To account for seasonal dependence of the mean-shifts the correction was performed independently for each calendar month. In comparison to the ground-based reference the homogenised data record shows an improvement over the original data record in terms of anomaly correlation and bias. In general the method can also be applied for the adjustment of satellite datasets addressing other variables to bridge the gap between CDRs and near-real-time data.
منابع مشابه
A near real-time satellite-based global drought climate data record
Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Pre...
متن کاملGlobal Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation
Three independent surface soil moisture datasets for the period 1979–87 are compared: 1) global retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), 2) global soil moisture derived from observed meteorological forcing using the NASA Catchment Land Surface Model, and 3) ground-based measurements in Eurasia and North America from the Global Soil Moisture Data Bank. Time-average ...
متن کاملA Long-Term, High-Resolution Wetland Dataset over the Amazon Basin, Downscaled from a Multiwavelength Retrieval Using SAR Data
A climatology of wetlands has been derived at a low spatial resolution (0.258 3 0.258 equal-area grid) over a 15-yr period by combining visible and near-infrared satellite observations and passive and active microwaves. The objective of this study is to develop a downscaling technique able to retrieve wetland estimations at a higher spatial resolution (about 500 m). The proposed method uses an ...
متن کاملAtmospheric Soundings in Near-Real Time from Combined Satellite and Ground-Based Remotely Sensed Data
A mobile profiling system has been developed that is capable of probing the atmosphere from the surface to over 30 km. The Mobile Profiling System (MPS) combines ground-based instruments, including a five-beam 924-MHz radar wind profiler, a radio acoustic sounding system, and two passive microwave sounders, with a receiver and processor for meteorological satellite data. Software in the MPS pro...
متن کاملReconstructing Fire Records from Ground-Based Routine Aerosol Monitoring
Long-term fire records are important to understanding the trend of biomass burning and its interactions with air quality and climate at regional and global scales. Traditionally, such data have been compiled from ground surveys or satellite remote sensing. To obtain aerosol information during a fire event to use in analyzing air quality, we propose a new method of developing a long-term fire re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013